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ABSTRACT
By-groups are special (torsion-free) abelian Butler groups. The interest in
this class of groups comes from representation theory. A particular functor,
also called Butler functor, connects algebraic properties of the category
of free abelian groups with (a few) distinguished subgroups with these
Butler groups. This helps to understand Butler groups and caused lots of
activities on Butler groups. Butler groups were originally defined for finite
rank, however a homological connection discovered by Bican and Salce
opened the investigation of Butler groups of infinite rank. Despite the fact
that classifications of Butler groups are possible under restriction even for
infinite rank (see a forthcoming paper by Files and Gobel [Mathematische
Zeitschrift]), general structure theorems are impossible. This is supported
by the following very special case of the Main Theorem of this paper,
showing that any ring with a free additive group is an endomorphism ring
of a Butler group. The result implies the existence of large indecomposable
or of large superdecomposable Butler groups as well as the existence of

counter-examples for Kaplansky’s test problems.
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§1. Introduction

Thirty years ago M. C. R. Butler [10] introduced a class of torsion-free abelian
groups that now carries his name. Recent years saw stormy new developments
in the theory of these groups, much of which was motivated and fueled by inter-
actions with representation theory of posets (see [1-5, 7-9, 11, 12, 35]). Butler
groups of finite rank are defined as pure subgroups (or, equivalenty, torsion-free
epimorphic images) of finite direct sums of subgroups of Q. This definition can-
not be extended in a meaningful way to groups of infinite rank. But then Bican
and Salce [9] showed that Butler groups can be characterized by the equation
Bext!(B, T) = 0 for all torsion groups T, i.e. each short balanced exact sequence
0 —-T — X — B — 0 splits. Since this condition makes sense for torsion-free
groups B of any rank, one calls a torsion-free group B a Butler group (or Bj-
group) if Bext!(B,T) = 0 for all torsion groups T. We refer to Fuchs [26, Vol.
I1] for basic properties of the functor Bext!(_, ).

This homological definition of Butler groups (of any rank) opened up a whole
new field of research in abelian group theory aimed at gaining an understanding
of By-groups. Bican and Salce introduced a class of By-groups that are commonly
called By-groups: A torsion-free abelian group B is called By-group if B is the
union of a smooth ascending chain of pure subgroups B,,a < A, for some ordinal
A le. B= UQO B,, such that each B, is pure in B and B,41 = B, + L, for
some finite rank Butler group L,. Each By-group is a Bj-group, cf. [9]. There
are numerous partial results concerning the converse of this inclusion — see
[18-20] for a sampling. The latest word in the matter might be [27]. It seems
that set theoretic conditions play the important role (cf. [20]). In the present
paper we want to investigate the richness of the class of Ba-groups. Despite
the fact that some classes of Butler groups of finite rank are classified, this task
seems to be hopeless for Bs-groups of infinite rank even if the typesets of the
groups are tiny. First examples of Bo-groups are due to Fuchs and Metelli [28],
who constructed large indecomposable as well as superdecomposable Ba-groups.
Their construction is based on methods found in [16] or [25]. A different approach
was utilized in [21] to construct countable Be-groups. Here representations of
modules with four distinguished submodules were the basic tool as developed in

[31]. A generalization and unification of these results will be our main

THEOREM: Let R be a ring with 1 € R such that R* is a Ba-group and let
A > |R| be a cardinal with A = X¥. If R* is p-reduced for three distinct primes
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p, then there exist a By-group H such that |H| = X and End H = R. IfR* isa
free abelian group, then H can be chosen so as to have typeset Ty = {71, 72,70}

where 11, T; are incomparable and 79 = 1 A T3.

We have a topological version of this theorem, see (§4). These results have

several applications, that are standard by now.

(a) For any infinite cardinal A we find an indecomposable Butler group H of
cardinality A.

Here we use (4.2), a stronger version of the above theorem to deal with cardinals

A with AR £ ),

(b) Let (I', +) be an abelian semigroup. Then there exist Bo-groups G, (y € '),
such that for @, € ', Go @ Gg = Gayp and G, = Gg if and only if
a = (3. In particular, if I' = Z/kZ, then there exists a Ba-group G such
that @,, G = @,, G if and only if m = nmod k.

(c) If k is any cardinal, then we can find a Bs-group G that is k-super-
decomposable, i.e. each summand # 0 of G decomposes into a direct sum
of k non-trivial summands

If k is finite, this follows from the above theorem, and if « is infinite, we employ

the topological version.

(d) There exist pairwise non-isomorphic Butler groups Gg, Gy, G2 such that
Go® G122 GydGs.

(e) If A is any infinite cardinal, in particular if ¢fA = w, then we find a B.-
group G of cardinality A such that G is not a direct sum of A non-zero
summands, but for each cardinal ¥k < A the group G decomposes into a
direct sum of x summands # 0.

Here we need the topological realization theorem which follows from [31], and

not from the Black Box.

§2. Basic notions

The following definition is due to Hill [34]. A family F of pure subgroups of an
abelian group A is an axiom-3 family if 0 € F, 3" X € F for any X C F and
whenever U € F and C is a countable subset of A, then there is V € F with
UuC CV and V/U countable.

Let G be a torsion-free abelian group and A a pure subgroup of G. The
subgroup A is called decent, cf. [4], if for any finite subset X of G there is a
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subgroup L of G such that L is a finite rank Butler group, X € A+ L and
A+ L is pure in G. It was shown in [4] that By-groups are characterized as those
torsion-free abelian groups that admit an axiom-3 family of decent subgroups;
see also [27].

Let R be aring with 1 € R. An Ro-module F = (Fy, Fy, F) is a free R-module
Fy together with two free submodules Fi, Fy; C Fy. The notion of axiom-3 families
extends naturally to Ry-modules:

Let F = (Fy, F1, F3) be an Ry-module and F a family of Ry-submodules of F.
We call F an axiom-3 family if
(i) (0,0,0) € F.
(i) If X C F, then Y X € F, where )X = (50,51,52) and S; =
S {Xi: (Xo, X1, Xo) € X}
(iti) If C C Fy is countable and U = (Uy,U;,Us) € F, then there is V =
(Vo,V1,V2) € F with CU Uy C Vy and V;/U; is a countably generated
R-module for i = 0,1, 2.

For ease of notion, we say that F = (Fy, F1, F3) is in Repy(R) if F; is free for
0<i<2and FiNFy, =0.

Let A be a torsion-free abelian group and p an integer. We say that A is p-
reduced if p* A = 0, where p*A =, ., p" A and we also say that A is II-reduced
for a set II of integers if A is p-reduced for each p € Il. Let T,, = {70, 71,...,Tn}
be a set of distinct types such that 70 = 7, A7 for 1 < ¢ # j < n. (Note
that 71,...,7, are pairwise incomparable.) Let B(T) be the class of all finite
rank Butler groups with typeset contained in T, where T is any finite lattice of
types. Any undefined notions may be found in [26]; in particular ¢(A) denotes
the torsion-subgroup of A and D C A denotes a summand of A.

§3. Basic lemmas

The following lemma appears in (3], for R = Z. We will need a natural general-

ization:

LEMMA 3.1: Let II be a set of primes and R be a ring with 1 € R,1 # 0 such
that R* is torsion-free and I-reduced. If F = (Fy, F1, F3) is an Ry-module with
FiNF, =0 and F; free for i = 0,1,2 such that Fy/(F, ® Fs) is a II-group,
then we can find an axiom-3 family F of Ry -submodules of F with the following
properties:
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(a) IfX = (X(],X],)(Q) € F,then XiNXy=0and X; = F;NX, fori =0, 1,2.
(b) F;/X; is a free R-module (in particular X; C F; ) fori = 0,1, 2.
(¢) Xo/(X1® X3) is a ll-group.

The proof is an easy back and forth argument. Recall that F; is a free R-
modules for ¢ = 0,1,2 and therefore we have bases which we keep fixed to
introduce an axiom-3 family Fo of summands X of Fy such that F/X, F;/X;
are free for X; = F; N X and i = 1,2. Using back and forth again it is easy to

see that the axiom-3 family Fy induces a subfamily
F'={DeFR|Dn(FL&F)=(DNnF)o(DNF)}

which again is an axiom-3 family.
Finally let

F= {(‘Yo,Xl,)(g)lXo € F' and X, =XgN F,}

This is an axiom-3 family satisfying (a), (b) and (c).
Next we specialize IT = {p} (p a prime) and show how to use Ry -modules to

find groups with “many” decent subgroups.

LeEMMA 3.2.: Let R be a ring with R* torsion-free and let
X = (X, X1, X2) CF = (Fo, F1, F2)

be Ry-modules with F; free for i = 0,1,2. Let p be a prime and A; subgroups of
Q with1/p ¢ A;, i = 1,2. Moreover assume that Fy/(F & F2) and Xo/(X1® X3)
are p-groups. If B = Xo + (A1 X1 ® A2X3) and H = Fy + (A F1 @ AoF3) then
the following holds:
() If X; is pure in F; for i = 0,1,2, then B is a pure R-submodule of H.
(1) If X; is a summand of F; for i =0,1,2 and R* is a By-group, then B is
decent in H.

Proof: First we show
(a) FLeF, =Foﬂ(A1F1®A2F2).
Since clearly Fy @ Fy C Fy N (A1 Fy @ AsF3), we may consider

[FO n (A1F1 b A2F2)]/(F1 (<] FQ) - [Fo/(Fl D FQ)] N [(A1F1 D A2F2)/(F1 () F2)]
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However

2
(ALFy ® AsFy)/F1 @ Fy = A1Fy/Fy & A Fa/Fy = @D @D (4; © R/Z® R)
j:l l‘ij

is a p’-group since 1/p ¢ A;. On the other hand Fy/Fy @ F; is a p-group. Thus
Fon(ALFy ® AoFy) = Fy & Fy.

(b) XoN(F1 & F3) =X, @ X,.

Clearly X1 & X5 C Xo N (F1 & F») and we consider

[Xo N (F1 @ F)]/(X1® Xa2) C [Xo/(X1 ® X2)] N[(F1 @ F2)/(X1 8 X2)).

Now Xo/(X: @ X3) is a p-group by hypothesis and (Fy & F3)/(X1 & Xg) =
(F1/X1) @ (F2/X5) is torsion-free since X; is pure in F; for i = 1,2. Thus (b)
follows.

Combining (a), (b) and Xo C Fy we have

XonN (AlFl @Ang) =XpN [(AlFl ®A2F2) ﬂF()] =XpN (Fl @FQ) = X; ® Xa.

Hence (b) can be improved to

(c) XoN(ALFyL @ AFy) = X1 & Xo.

We will use the following trivial observation several times:

(x¥) If G is an abelian group and U a torsion-free subgroup of G, then t(G) is

(naturally) isomorphic to a subgroup of G/U.

Recall B = Xp + A1 Xy + AsXo, H = Fy + A1F1 + AxFs and let K =
Xo+ ALFy + AsFy. Now we claim that

(d) t(H/B) is a p-group.

Using () for U = K/B and G = H/B it is enough to show that G/U = H/K
is a p-group and K/B is torsion-free:

By (a) we have Xy C F and by the modular law we have

H/K =[(Fy + (A F1 & A3 F))]/[Xo + (A1 Fy @ Ay Fy))
~Fo/((Xo + ALFy + A2 F2) N Fy)
=Fy/[Xo + (A1Fy + A2 F2) N Fy)
=Fo/[Xo + (F1 & Fy)]
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which is a p-group because Fy/(Fy ® F») is a p-group by hypothesis. Moreover,
using (c), (A1 X1 @ A3 X3) C A Fy & Ao F, and the modular law, we have

[Xo + (A1F1 @ A2 F3)]/[Xo + A1 Xy + A2 X0

(ALF1 © A2 Fo) [[Xo N (ALFy © AgFy) + A1 Xy + Az Xy
(ALF1 @ A2F2) /(A1 X1 © A2X>)

2A(F1/ X)) © Aa(F2/X2)

K/B

IR

which is torsion-free since A; C Q and F;/X; is torsion-free since RY is torsion-
free and X; is pure in F;.

Claim (d) can be rephrased as

(e) B is p'-pure in H.

In order to show (I) it remains to be shown that

(f) B is p-pure in H.

If ph = b is an equation with b € B and h € H, then we can write

b=xo+bix1 +boxy, h= fo+hifi+hafs

with b;, h; € A; and z; € X;, f; € F;.
Since 1/p ¢ A; , i = 1,2 the above equation becomes

pmh = p(mfo + mhy f1 + mhafo) = mxo + mbyzy + mbaxy = mb

for some m € Z with p jm and mb;, mh; € Z.

The right-hand side is in X, as mb;z; € X; C Xo. However X is pure in
Ey by hypothesis and we find u € Xy C B with pu = mzg + mbyx; + mbyzy =
m(zo+biz1 +baxs) € Xo. Thus pu € BnmH = mB by (e) and p doesn’t divide
m. Thus pu = mu’ for some v’ € B. Since p fm we have u” € B with u = mu”.
Thus pu” = b from mpu” = pu = mb and torsion-freeness.

Next we show (II) and to this end consider a finite subset C in H. We have to
find a pure subgroup X of H with C C X = B+ L, L a finite rank Butler group.
Obviously

H/(F\ & Fp) = [Fo+ (A1Fy @ A2 R))/(FL & Fy)
C F/(F1® F2)+ (A1Fy ® A F)/(F1 0 Fy)
where Fy/(Fy @ F3) is a p-group and

2
(A1Fy @ A2 Fy)/(FL @ Fy) = A\Fy/Fy @ A:Fy/Fy = @D @ ((4;R)/R)
j=1rkF;
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is a torsion p’-group. Thus

(g) H/(Fy @ F5) is a torsion group.

Since C is finite by (g), there is an n € N with nC C F; @ F> and we may
assume C C F} @ Fy. Since we may replace ¢ € C by its components in F and
F3, we may assume C C F; U Fy. Recall that F;/X; is a free R-module and R*
is a By-group. Now we may find an abelian group Y¥; = X; © B; pure in F; such
that B; has finite rank and CNF; C B; fori = 1,2. If Y5 = (Y1 ® Y3). C Fo,
then we claim

(h) Yo/(Y1 & Yz) is a p-group.

Observe that Fy/(F1 @ F3) is a p-group by hypothesis, containing

Yo+ (F1® F)/(Fio Fp) 2= Yo+ (FA @ F) /(Y18 Ya)/[(F1 @ F2)/ (Y1 9 Ya)].

The denominator (F1 @ F3)/(Y18Y2) = (F1/Y1) @ (F3/Y>) is torsion-free because
of the purity of ¥; in F;, i = 1,2. Employing (*) we see that Yp/(Y; & Y3) must
be a p-group.

Recall that X; & X2 C Yy and Yy is pure in Fy. Therefore Xo C Yy since
Xo/(X1 & X3) is a p-group. Since Xo C Fp and X, is a summand of Fp, the
modular law implies that X, is a summand of Yy and the complement is iso-
morphic to

Yo/Xo = [(B1 ® Bz + Xo)/Xo]x = (B1 + B2 + X0)«/ X0 = [(B1 + B2).« + X0}/ Xo

which is a pure subgroup of the free R-module Fy/X,. Now we use that Rt is a
By-group and that By & Bj has finite rank. We infer that(B; & By), = L C @R
is a finite rank Butler group. If X = Yy + (A1Y1 @ A2Y3), then X satisfies the
assumptions on B in (I) and X is pure in H. On the other hand Yy = X + L by
the previous remarks and Xg C B C X allows us to replace the definition of X by
X=L+Xo+ (A1Y1 @Aszz) =B+ (L+A1B1 +A2Bz) with L+ (A1B1 @A2B2)
as the desired Butler group of finite rank. Also C' C X by design and B is decent
in H.

§4. Butler groups

Our construction of By-groups with prescribed endomorphism ring R will be
based on a realization theorem of R as endomorphism ring of some more general

cotorsion-free group G. In principle there are two different realization theorems
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for R available. The first one puts less strain on R, but requires a cardinal jump
|G| > |R| and even more due to a construction using Shelah’s Black Box or some
similar combinatorical argument — see [17] and [22]. The second one requires
additional properties of R, but we can get away without cardinal trouble. Each
type of realization theorem has its advantages regarding applications. We will
provide both of them and apply them to Rep,(R). In the process we will be
changing categories several times:

Rep,(R) — abelian groups — Repy{R) — Ba-groups,

where Rep,(R) denotes the category of free R-modules with four distinguished

submodules.

PROPOSITION 4.1:
(i) If R a cotorsion-free ring and A = AX0 is a cardinal > |RY, then there exists
a cotorsion-free group G with EndG = R and |G| = A.
(ii) Let R be a torsion-free ring such that R is p-reduced for a prime p and that
ﬁ, the p-adic closure of R, has transcendence degree at least four over R. If
A is any cardinal > |R|, then we can find a torsion-free, p-reduced abelian
group G with EndG 2 R and |G| = A.
(iii) If R is a ring of cardinality < 2" such that R* is torsion-free of cardinality
< X and p-reduced for some prime p with Rg < X < 280, then there exists
a cotorsion-free, p-reduced abelian group G with End G = R and |G| = .
In each of the cases (i), (ii), and (iii) the group G is an R-module and there
are free R-modules F;,1 = 0,1, such that 0 — Fy — Fy — G — 0 is a short exact
sequence of R-modules. Moreover, if R is p-reduced for some prime p, then G is p-
reduced, and if Z ;) is the ring of integers localized at p, then Hom(G,G®Z,)) =
R®Zy) and G contains a free R-module L of rank X such that G/L is a p-group.

Proof: (i) is a main result in [17] and (ii) follows from [25]. In [25] the “co-
maximal” argument must be replaced by a transcendental argument, as in [32)].
The existence of a free resolution follows in case (i) from the construction of
G: The cotorsion-free group G is obtained as a union of a smooth chain of R-
submodules G,, @ < A* , an ordinal, such that G441 =< Gg, yn: 1 € w > with
PYn+1 — Yn = @n € G,. By transfinite induction, there is a short exact sequence
of free R-modules 0 — K — F,’8G, — 0. Let {y*: n € w} be free generators,
set Fay1 = F, @ne“ y» R and extend the map #.: F, — G, — 0 by sending ¥,
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onto yn. Then Koy1 = Ko & D, (0¥ny1 — vn — 75 (an))R where w3 ay,) is

a fixed preimage of a,,. One easily verifies that
0— Koq1 = Fay1 = Gop1 =0

is short exact, and Ko C Kay1,Fo T Fuyy implies that K = [J, ). Ko and
F =J,cr» Fa are free R-modules.

Similarly, case (ii) requires a short inspection of the generators used in [31]. The
additional properties about Hom(G, G ® Z,)) and the existence of L are easily
established. The first one requires a slight modification of the constructions and
the latter is obvious from the construction. For instance in case (ii) the module
L is just the free module Fy, where End(Fy, Fy,...,Fy) = R in Rep,(R), and in
case (i) L is the free R-submodule generated by “B” and all the “y,”, & < A\* in
[17].

Inspection of the proof in [13] or [30] shows that (iii) holds.

LEMMA 4.2: Let R be a ring with 1 € R such that Rt is a By-group and
F = (Fy, F1, Fy) € Repy(R) such that Fy/(Fy + F») a p-group and A; C Q with
% ¢ A; fori=1,2. Then Fp = Fy + A1 Fy + Ay F, is a By-group.

Proof: By the definition of Ba-groups, we must find an ascending smooth chain
F* of pure and decent subgroups of Fr with countable quotients of successive
members and union equal to Fg. First we apply Lemma 3.1 for II = {p} and
find an axiom-3 family F of Rs-submodules X = (X, X1, X2) € F of F such
that X; = F; N Xy and F;/X; is free for ¢ = 0,1, 2.

We may assume that F = J,,,. X(®), X(®) = (x$®, X, x{y with X(®) ¢
F and X(@+1) /X () free of countable rank for all & < A*. We will refine the chain
{X(®): a < A\*} to construct the desired chain for Fg. Since R* is a By-group,
we can write R =, <u R, where the R,’s are pure and decent subgroups of R
with Ryy1/R, of finite rank.

First, let X = X{ + 4, X + 4,x{*) € F* for a < A*. By Lemma 3.2,
X is pure and decent in Fi and Xi(o‘)@@n@ AR = x[*H since X € F
implies Xi(a) C Xi(aﬂ) fori=0,1,2.

Now let

2
Xry = Xn ® (D " Rs) + (D €D 4" Rp)).

n<w i=1 n<w
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By Lemma 3.2 the R-module Xg_ is pure and decent in Xp__, and hence in Fg.
Therefore XI(QQH) = Up<, XR, and Xp,,,/XR, has finite rank. Thus the chain
{Xp,: B < u}is a chain to be put between Xg’ and X oD
is a Bs-group.

to witness that Fgp

MAIN THEOREM 4.3: Let R be a ring, 1 € R, such that Rt is a Bs-group.
Suppose that there are three distinct primes p = pg, p1, p2 such that Rt is p;-
reduced for i = 0,1,2. If A is an infinite cardinal and A\ = |R| > 2% or cfA = w
and X > 2% we also assume
(*) The p-adic closure of R has transcendence degree at least four over R. Then
there exists a Ba-group H with End H = R and |H| = A. Let 7; be the
type of Qi) = {z/pP: 2 € Zyn < w) fori=1,2and 1o =y Ay = 0. If
R™ is free, then H is a Ba-group with typeset {79, 71, T2}

Remark: Observe that a suitable choice of A, e.g. A = ANo > |R|, makes (%)
empty. However the case A = |R| will be of particular interest in our applications
() in the introduction. The cardinal conditions allow us to apply three different
types of realization theorems as summarized in (4.1).

Proof: Recall that Proposition 4.1 is applicable for any choice of A and we have
a free resolution 0 — Fy — Fy — G — 0 with free R-modules F; of rank A and
Fy a submodule of Fy. Let F3 C Fy be a free R-module with F; N F3 = 0 and
(Fs& Fy)/Fy 2 L C G as in Proposition 4.1.

Let F3 = @, ,. P, <, €inR and define F5 = P, D, (ei — p"ein)R where
Fi = @, <« €¢iR. Recall that we may assume that F3 and F; have the same
infinite rank. Clearly

(1) FiN(Fy)yp =0,

where (...)xp denotes the p-purification of (...), as follows by our choice of F; and
Fy N F3=0. It is also clear that

(2) F} is pure in Fp,

because G is torsion-free. Moreover Fy/(F) @ F») is an epimorphic image of G/L
and hence a p-group by Proposition 4.1. We have

3) Fo/(Fy ® Fy) is a p-group,
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and claim
(4) Hom(Fy/Fy, G @ Zpy) = 0.

Let ¢: Fg — G @ Z(p) be such a homomorphism with Fpp = 0. Then ;9 =
p(em)p for all i < k,n < w. Thus e;p € p*(G @ L) But Fo/(F1 @ F) is a
p-group and G ® Zy,) is torsion-free. Hence ¢ = 0. Now let F = (Fy, F1, Fy) €
Rep,(R). Next we show

(5) EndF = R.

This also follows from [24], but we include the short proof for the convenience
of the reader. If ¢ € EndF, then ¢ induces ¢': Fy/F) — Fy/Fy & G and by
the choice of G we have ¢’ = r € R. Thus ¢ — r: Fp — Fy maps Fp into Fj.
In particular, Fo(p —7) C Fo N Fy = 0 by (i) and ¢ — r induces a map from
Fy/F; + F», a p-group, into Fy, a torsion-free group. This shows that ¢ —r = 0.
We are finally ready to define our By-group. Let p1, p2 be the other two primes
given in the hypothesis, let A; = Q?:) and define H = Fy + (A F) ® Ay F), a
By-group by Lemma 4.1. Let 7; denote the type A; and 79 = 1y A 12 = 0. We
will show that

(6) H(m)=A1F1 and H(m3) = (A2F2).p;
(7)) EndH=R; and
(8) if R is homogeneous of type 0, then the typeset of H is {79, 71, ™2}.

To show (6) first observe that trivially A;F; C H(r;). Let h € H(r;). Then
p*h € A F © AyF, for some k € N and since A} F; @ AyF, is p/-pure in H (since
Fo/F1 ® F, is a p-group) we have |[p*h| = {pkhl,(;A‘Fl@AzFZ) for all primes g # p.
This shows that p*h € A;F; and h € (A2F).p. Recall that Fy is pure in Fp,
p#p; fori=1,2and 1/p ¢ A; for i = 1,2. This implies that A; ) is p-pure in
H, and hence h € A;F; follows and (6) holds.

To show that (7) holds, consider ¢ € End(H). Since H(7;), ¢ = 1,2, is fully
invariant, we infer H(m)p = (A1F1)e C A;F; for i = 1,2. Note that H/A1 F} =
(Fo+ A1F1 4+ A2 Fy) JALFy & (Fo+ Ao Fy) /[A1Fi N (Fy + A2 F3)). In the first step
of the proof of Lemma 3.2, we showed that FyN (A1 F1+ A2 Fy) = Fy+ F; and we
infer H/A1Fy & (Fo+AxFy)/Fy = Fo/F1+(A2F20 F1)/Fy C G+ A3L € GQZ,)
since p # ps.
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Consider ¢' = ¢ |Fy/F;. Note that Fy/F; is isomorphic to a subgroup of
H/AF) and ¢’ € Hom(G,G ® Z(,)) = R ® Z,) by choice of G. Thus ¢’ =
r/m,m € N is relatively prime to p.

Let ¢ = pm — r. Then ¢ € End(H) and Hy C A1 Fy. In particular A3 Fy1) C
(A2F3)sp N A1Fy = 0 by (6). Thus ¢ induces a map ¢": Fy — A;F; with
¢ |Fy = 0. Since A;F; is a free module over A;R we may view A F) as a
subgroup of G ® Z;), and ¥’ induces a map Fo/F; — G ® Z(p). Now (4) implies
¢’ = 0. We infer ¢ = 0 and ¢ = r/m since H/Fy is torsion. Let e be an m-pure
element in the R-module A{F) @ A2F;. Note that e is m-pure if units are the
only factors of m which divide e. Then ep = e € eR and m = 1 follows. This
shows that (7) holds.

Now let us assume that RT is homogeneous of type 7o = 0, i.e. RY is free,
and pick h € H. Then there is X = (Xo, X1, X3) C F = (Fp, F1, Fy) such that
mh € Xg for some m € Nand X; C F; for i = 0,1,2. By Lemma 3.2 the
R-module B = Xo + A1 X7 + A3 X is pure in H and we may compute the type
of h inside B. Since R* is free, there are free pure subgroups Y; C X; such that
heYy+ (4,1 & AyY,) = B*, B* is pure in B, and B* is an almost completely
decomposable group of finite rank. This shows that h is of type 7; for some
i€ {0,1,2}.

We want to conclude this paper by giving a “topological version” of Theorem

4.3. For ease of notation, we introduce the following

Definition 4.4: Let R be aring with 1 € R: We say that R admits a Ba-topology
if there is a topology 7 on R such that
(1) 7 is Hausdorff and R is complete in 7.
(2) 7 is a linear topology induced by a family 7" of right ideals of R such that
(R/I)* is a By-group for each I € T.
(3) There exist three distinct primes p; such that (R/I)* is p;-reduced for all
IeTand0<i<2

With the help of this definition, we are now able to state our final
THEOREM 4.5: Let R be a ring with a Bs-topology, and Ty = {79, 71,72} be
as above. Then there exists a Be-group H such that End H, endowed with the

finite topology, is topologically and algebraically isomorphic to R. If R/I is
homogeneous of type 1y for each I € T, then Ty is the typeset of H.

Proof:  We call an R-module of the form R/I(I € T) T-cyclic. A direct sum of
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T-cyclic modules is called > -7-cyclic: We now have to run through the whole
paper — which we will leave to the reader — substituting “free R-modules” by
> -T-cyclic modules.

Moreover, we have to employ — for case (i) in Proposition 4.1 — the cotorsion-
free topological version in [17]: There exists a cotorsion-free abelian group G such
that End G, with its finite topology, is isomorphic to R as topological rings. Here

G is a union of a smooth chain G = |J,.,, Ga such that Goyy = (Ga,y,(f”) :

n < w) such that py,(::L)l - y,(la) = a, € G, and for all n < w, AnnR(yfla)) =
I, € T. Then (like in the proof of Proposition 4.1) there exists a ) -7 -cyclic
submodule L in G, and hence there are > -7-cyclic modules Fp, F; such that

0 — Fy — F1; —» G — 0 is short exact.
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