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ABSTRACT 

B2-groups are special (torsion-free) abelian Butler groups. The interest in 

this class of groups comes from representation theory. A particular functor, 

also called Butler functor, connects algebraic properties of the category 

of free abelian groups with (a few) distinguished subgroups with these 

Butler groups. This helps to understand Butler groups and caused lots of 

activities on Butler groups. Butler groups were originally defined for finite 

rank, however a homological connection discovered by Bican and Salce 

opened the investigation of Butler groups of infinite rank. Despite the fact 

that classifications of Butler groups are possible under restriction even for 

infinite rank (see a forthcoming paper by Files and GSbel [Mathematische 

Zeitschrift]), general structure theorems are impossible. This is supported 

by the following very special case of the Main Theorem of this paper, 

showing that any ring with a free additive group is an endomorphism ring 

of a Butler group. The result implies the existence of large indecomposable 

or of large superdecomposable Butler groups as well as the existence of 

countez-examples for Kaplansky's test problems. 
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w I n t r o d u c t i o n  

Thir ty years ago M. C. R. Butler [10] introduced a class of torsion-free abelian 

groups that now carries his name. Recent years saw stormy new developments 

in the theory of these groups, much of which was motivated and fueled by inter- 

actions with representation theory of posets (see [1-5, 7-9, 11, 12, 35]). Butler 

groups of finite rank are defined as pure subgroups (or, equivalenty, torsion-free 

epimorphic images) of finite direct sums of subgroups of Q. This definition can- 

not be extended in a meaningful way to groups of infinite rank. But then Bican 

and Salce [9] showed that  Butler groups can be characterized by the equation 

Bext 1 (B, T) = 0 for all torsion groups T, i.e. each short balanced exact sequence 

0 ~ T --* X ~ B ~ 0 splits. Since this condition makes sense for torsion-free 

groups B of any rank, one calls a torsion-free group B a Butler group (or B1- 

group) if Bext l (B,  T) = 0 for all torsion groups T. We refer to Fuchs [26, Vol. 

II] for basic properties of the functor Bextl(_, _). 

This homological definition of Butler groups (of any rank) opened up a whole 

new field of research in abelian group theory aimed at gaining an understanding 

of Bl-groups. Bican and Salce introduced a class of Bl-groups that  are commonly 

called B2-groups: A torsion-free abelian group B is called B2-group if B is the 

union of a smooth ascending chain of pure subgroups B~, a < A, for some ordinal 

A, i.e. B = U~<a B~ such that each B~ is pure in B and Ba+l = B~ q- L~ for 

some finite rank Butler group La. Each B2-group is a Bl-group, cf. [9]. There 

are numerous partial results concerning the converse of this inclusion - -  see 

[18-20] for a sampling. The latest word in the matter  might be [27]. It seems 

that  set theoretic conditions play the important role (cf. [20]). In the present 

paper we want to investigate the richness of the class of B2-groups. Despite 

the fact that  some classes of Butler groups of finite rank are classified, this task 

seems to be hopeless for B2-groups of infinite rank even if the typesets of the 

groups are tiny. First examples of B2-groups are due to Fuchs and Metelli [28], 

who constructed large indecomposable as well as superdecomposable B2-groups. 

Their construction is based on methods found in [16] or [25]. A different approach 

was utilized in [21] to construct countable B2-groups. Here representations of 

modules with four distinguished submodules were the basic tool as developed in 

[31]. A generalization and unification of these results will be our main 

THEOREM: Let R be a ring with 1 C R such that R + is a B2-group and let 

A > IR! be a cardinal with A = A ~~ . I f  R + is p-reduced for three distinct primes 
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p, then there exist a B2-group H such that [H I = A and E n d H  ~- R. I f  R + is a 

free abelian group, then H can be chosen so as to have typeset T2 = {7-1,7-2, 7-0} 

where 7-a, 7-2 are incomparable and 7-0 -- 7-1 A T2. 

We have a topological version of this theorem, see (w These results have 

several applications, that are standard by now. 

(a) For any infinite cardinal A we find an indecomposable Butler group H of 

cardinality A. 

Here we use (4.2), a stronger version of the above theorem to deal with cardinals 

Awi thA ~~ ~A.  

(b) Let (F, +) be an abelian semigroup. Then there exist B2-groups Gx(7 E F), 

such that for a , ~  E F, G~ | GZ --- G~+~ and G~ ~ GZ if and only if 

a = /3. In particular, if E -- Z / k Z ,  then there exists a B2-group G such 

that ~ , ~  G ~ ~ n  G if and only if m -= n mod k. 

(c) If ~ is any cardinal, then we can find a B2-group G that is ~-super- 

decomposable, i.e. each summand r 0 of G decomposes into a direct sum 

of ~ non-trivial summands 

If ~ is finite, this follows from the above theorem, and if ~ is infinite, we employ 

the topological version. 

(d) There exist pairwise non-isomorphic Butler groups Go,G1,G2 such that  

Go | G1 -~ Go | G2. 

(e) If A is any infinite cardinal, in particular if cfA -- ~v, then we find a B2- 

group G of cardinality A such that G is not a direct sum of A non-zero 

summands, but for each cardinal ~ < A the group G decomposes into a 

direct sum of ~ summands r 0. 

Here we need the topological realization theorem which follows from [31], and 

not from the Black Box. 

~2. Basic notions 

The following definition is due to Hill [34]. A family ~- of pure subgroups of an 

abelian group A is an axiom-3 family if 0 E 7", ~ X E F for any X _C ~" and 

whenever U E ~" and C is a countable subset of A, then there is V E ~" with 

U u C C_ V and V/U  countable. 

Let G be a torsion-free abelian group and A a pure subgroup of G. The 

subgroup A is called decent, cf. [4], if for any finite subset X of G there is a 
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subgroup L of G such that L is a finite rank Butler group, X C_ A + L and 

A + L is pure in G. It was shown in [4] that B2-groups are characterized as those 

torsion-free abelian groups that admit an axiom-3 family of decent subgroups; 

see also [27]. 

Let R be a ring with 1 E R. An R2-module F = (F0, F1, F2) is a free R-module 

F0 together with two free submodules F1, F2 C_ F0. The notion of axiom-3 families 

extends naturally to R2-modules: 

Let F = (Fo, F1, F2) be an R2-module and .~ a family of R2-submodules of ~ .  

We call .7: an axiom-3 family if 

(i) (0, O, O) e .f.  
(ii) If  X C 3 c, then ~ X r 3 c, where ~ X = (So, S1,S2) and Si = 

E{x : (x0, xl, e x}. 
(iii) I f  C C_ Fo is countable and U = (Uo, U1, U2) E F, then there is V = 

(Vo, VI, V2) r f with C U Uo C_ Vo and Vi/Ui is a countably generated 

R-module for i = 0, 1, 2. 

For ease of notion, we say that F = (F0, F1, F2) is in Rep2(R ) if Fi is free for 

0 < i < 2 and FIOF2 = 0 .  

Let A be a torsion-free abelian group and p an integer. We say that  A is p- 

reduced ifp"~A = 0, where p~~ = N~e~pnA and we also say that A is H-reduced 

for a set 1I of integers if A is p-reduced for each p r  Let Tn = {to, r l , . . . ,  r~} 

be a s e t  of distinct types such that ro = r i A r j  for 1 < . i  # j _< n. (Note 

that r l , . . . , r n  are pairwise incomparable.) Let B(T) be the class of all finite 

rank Butler groups with typeset contained in T, where T is any finite lattice of 

types. Any undefined notions may be found in [26]; in particular t(A) denotes 

the torsion-subgroup of A and D r- A denotes a summand of A. 

w Bas ic  l e m m a s  

The following lemma appears in [3], for R = Z. We will need a natural general- 

ization: 

LEMMA 3.1: Let H be a set of primes and R be a ring with 1 E R, 1 # 0 such 

that R + is torsion-free and H-reduced. I f F  = (Fo, F1, F2) is an R2-module with 

F1 n F2 = 0 and Fi free for i = 0, 1, 2 such that Fo/(F1 | F2) is a H-group, 

then we can find an axiom-3 family .~ of  R2 -submodules o f f  with the following 

properties: 
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(a) I f X  = (Xo, X1, X2) E $', then X1MX2 = 0 and Xi = Fi MXo for i = 0, 1, 2. 

(b) Fi/Xi is a free R-module (in particular Xi r- Fi ) for i = 0, 1, 2. 

(c) Xo/(X1 | X2) is a H-group. 

The proof is an easy back and forth argument. Recall that Fi is a free R- 

modules for i = 0, 1, 2 and therefore we have bases which we keep fixed to 

introduce an axiom-3 family 9to of summands X of Fo such that  F/X ,  Fi/Xi  

are free for Xi = Fi 0 X and i = 1, 2. Using back and forth again it is easy to 

see that  the axiom-3 family ~'o induces a subfamily 

~-' = {D E ~-olD n (/"1 �9 F2) = (D O F~) ~9 (D M F2)} 

which again is an axiom-3 family. 

Finally let 

.~ = {(Xo, Xl,X2)lXo e 7 and Xi = Xo N Fi}. 

This is an axiom-3 family satisfying (a), (b) and (c). 

Next we specialize II = {p} (p a prime) and show how to use R2 -modules to 

find groups with "many" decent subgroups. 

LEMMA 3.2.: Let R be a ring with R + torsion-free and let 

x = (Xo, X l , X 2 )  c_ F = (Fo, F1,F2) 

be R2-modules with Fi free for i --- 0, 1, 2. Let p be a prime and Ai subgroups of 

Q with 1/p q~ Ai, i = 1, 2. Moreover assume that Fo/(F1 OF2) and Xo/(X1 |  

are p-groups. If B = Xo + (A1X1 �9 A2X2) and H = Fo + (A1F1 | A2F2) then 

the following holds: 

(I) If Xi is pure in Fi for i = 0, 1,2, then B is a pure R-submodule of H. 

(II) If Xi is a summand of Fi for i = 0 , 1 , 2  and R + is a B2-group, then B is 

decent in H. 

Proof'. First we show 

(a) F1 | F2 = Fo N (A1F1 �9 A2F2). 

Since clearly F1 �9 F2 C Fo M (A1F1 @ A2F2), we may consider 

[Fo n (AIF1 @ A2F2)]/(F1 G F~) C [Fo/(F1 | F2)] N [(A1F1 @ A2F2)/(F1 @ F2)]. 
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However 

2 

(A1F1 | A2F2)/F~ | ['2 ~- A1FI/F1 q2 A2F,2/F2 TM ( ~  (~]~(Aj | R/Z | R) 
j----1 rkFj 

is a p'-group since 1/p ~ Aj. On the other hand Fo/F1 �9 F2 is a p-group. Thus 

Fo N (A1F1 | A2F2) = F1 �9 F2. 

(b) Xo N (El �9 F2) = Xl | X2. 

Clearly X1 | X2 C_ Xo n (F1 �9 F2) and we consider 

[Xo n (F~ ~ F2)]/(Xl �9 X~) c [Xo/(Xl �9 X2)] n [(F~ �9 F2)/(X~ ~ X~)]. 

Now Xo/(X1 �9 X2) is a p-group by hypothesis and (F1 | F2)/(X1 �9 X 2 )  --- 

(F1/X1) �9 (F2/X2) is torsion-free since X~ is pure in Fi for i = 1, 2. Thus (b) 

follows. 

Combining (a), (b) and Xo _c Fo we have 

Xo n (AIF1 �9 A2F2) = Xo n [(A1F1 | A2F:) n Fo] = Xo n (F1 | F2) = Xl | X2. 

Hence (b) can be improved to 

(c) Xo N (A1F1 �9 A2F2) = X1 �9 X2. 

We will use the following trivial observation several times: 

(*) If G is an abelian group and U a torsion-free subgroup of G, then t(G) is 

(naturally) isomorphic to a subgroup of G/U. 

Recall B = Xo + A1X1 + A2X2, H = Fo + A1F1 + A2F2 and let K = 

Xo + A1FI + A2F2. Now we claim that 

(d) t(H/B) is a p-group. 

Using (*) for U = K / B  and G = H/B  it is enough to show that G/U TM H / K  

is a p-group and K / B  is torsion-free: 

By (a) we have X0 C_ F and by the modular law we have 

H/K =[(Fo + (A1F1 �9 A2F2)]/[Xo + (A1F1 �9 A2F2)] 

~Fo/[(Xo + A1F~ + A2F2) (7 Fo] 

=Fo/[Xo + (AIF1 + A2F2) f3 Fo] 

=Fo/[Xo + (F1 �9 F2)] 
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which is a p-group because Fo/(F1 | F~) is a p-group by hypothesis. Moreover, 

using (c), (A1X1 | A2X2) C_ A1F1 | A2F2 and the modular law, we have 

K / B  =[Xo + (AIF1 @ A2F2)]/[Xo + AIX1 + A2X2] 

---(AIF1 �9 A2F~)/[Xo n (AIF1 �9 A2F2) + AIX~ + A2X2] 

=(A1F1 �9 A2F2)/(A1X1 | A2X2) 

~AI(F1/X, )  �9 A2(F2/X2) 

which is torsion-free since Ai C_ Q and Fr is torsion-free since R + is torsion- 

free and Xi is pure in Fi. 

Claim (d) can be rephrased as 

(e) B is p'-pure in H. 

In order to show (I) it remains to be shown that 

(f) B is p-pure in H. 

If ph = b is an equation with b C B and h E H, then we can write 

b = xo + blxl + b2x2, h = fo + hl f l  + h2f2 

with bi, hi c Ai and xi C Xi, fi E F~. 

Since l ip  ~ A~ , i = 1, 2 the above equation becomes 

pmh = p(mfo + mhl f l  + mh2f2) = mxo + mblxl + mb2x2 = mb 

for some m E Z with p Xm and mb~, mhi E Z. 

The right-hand side is in Xo as mbixr C Xi C_ Xo. However Xo is pure in 

Fo by hypothesis and we find u E Xo C_ B with pu = mxo + mblXl + mb2x2 = 

m(xo+blXl +b2x2) E Xo. Thus pu E BMmH = mB by (e) and p doesn't divide 

m. Thus pu = mu ~ for some u' E B. Since p Xm we have u" E B with u = mu". 

Thus pu" = b from mpu" = pu = mb and torsion-freeness. 

Next we show (II) and to this end consider a finite subset C in H. We have to 

find a pure subgroup X of H with C C X -- B + L, L a finite rank Butler group. 

Obviously 

H/(F1 G F2) = [Fo + (AIF1 ~ A2F2)]/(F1 | F2) 

c_ Fo/(g~ ~ F2) + (AIF1 �9 A2F2)/(FI ~ F2) 

where Fo/(F1 | F2) is a p-group and 

2 

(A,F1 ~ A2F2)/(F1 @ F2) -- A1F1/F1 �9 A2F2/F2 ~- ~ ~ ( ( A j R ) / R )  
j----1 rkFj 



148 M. DUGAS AND R. GC)BEL Isr. J. Math. 

is a torsion p~-group. Thus 

(g) HI(F1 | F2) is a torsion group. 

Since C is finite by (g), there is an n E N with nC C_ F1 | F2 and we may 

assume C C_ F1 | F2. Since we may replace c E C by its components in F1 and 

F2, we may assume C _ F1 u F2. Recall that Fi/Xi is a free R-module and R + 

is a B2-group. Now we may find an abelian group Yi =- Xi | BI pure in Fi such 

that  Bi has finite rank and C N Fi C_ Bi for i = 1, 2. If 1Io = (Y1 �9 Y2). C F0, 

then we claim 

(h) Yo/(Y1 �9 Y2) is a p-group. 

Observe that Fo/(Fa �9 F2) is a p-group by hypothesis, containing 

[Yo + (El �9 F:)]l(E~ ~ Y:) ~_ {Zo + (F~ �9 E~)I(Y~ �9 Z~)]/[(F1 �9 F:)/(Y1 m Z~)]. 

The denominator (F1 (~F2)/(Y1 | -~ (F1/Y1) @ (F2/Y2) is torsion-free because 

of the purity of Y/ in Fi, i = 1, 2. Employing (.)  we see that ]I0/(111 �9 Y2) must 

be a p-group. 

Recall that  X1 | X2 C_ Yo and Yo is pure in Fo. Therefore Xo C Yo since 

Xo/(X1 | )(2) is a p-group. Since Xo _C Fo and Xo is a summand of Fo, the 

modular law implies that Xo is a summand of Yo and the complement is iso- 

morphic to 

Yo/Xo = [ (B,  �9 B~ + Xo)/Xo], = (B, + B2 + Xo),/Zo = [ (B,  + B 2 ) ,  + Xo]/Xo 

which is a pure subgroup of the free R-module Fo/Xo. Now we use that R + is a 

B2-group and that B1 G B2 has finite rank. We infer that(B1 @ B2). = L C OR 

is a finite rank Butler group. If X = Yo + (A1Y1 @ A2Y2), then X satisfies the 

assumptions on B in (I) and X is pure in H. On the other hand 110 = Xo + L by 

the previous remarks and Xo c B C X allows us to replace the definition of X by 

X = L+Xo + (AIY1 �9 A2Y2) = B+ (L+AIBI +A2B2) with L+ (AIBI @A2B2) 

as the desired Butler group of finite rank. Also C _C X by design and B is decent 

in H. 

w Butler groups 

Our construction of B2-groups with prescribed endomorphism ring R will be 

based on a realization theorem of R as endomorphism ring of some more general 

cotorsion-free group G. In principle there are two different realization theorems 
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for R available. The first one puts less strain on R, but requires a cardinal jump 

[G[ > [R[ and even more due to a construction using Shelah's Black Box or some 

similar combinatorical argument - -  see [17] and [22]. The second one requires 

additional properties of R, but we can get away without cardinal trouble. Each 

type of realization theorem has its advantages regarding applications. We will 

provide both of them and apply them to Rep2(R ). In the process we will be 

changing categories several times: 

Rep4(R ) --~ abelian groups + ReP2(R ) + B2-groups, 

where ReP4(R ) denotes the category of free R-modules with four distinguished 

submodules. 

PROPOSITION 4.1: 

(i) I f  R a cotorsion-free ring and A = A ~~ is a cardinal > [RI, then there exists 

a cotorsion-free group G with EndG = R and IG] = A. 

(ii) Let R be a torsion-free ring such that R is p-reduced for a prime p and that 

R, the p-adic closure of R, has transcendence degree a t /eas t  four over R. I f  

fl is any cardinal >_ ]RI, then we can find a torsion-free, p-reduced abelian 

group G with End G ~- R and ]G I = A. 

(iii) I f  R is a ring of cardinality < 2 s~ such that R + is torsion-free of cardinality 

< ~ and p-reduced for some prime p with R0 _< A _< 2 s~ , then there exists 

a cotorsion-free, p-reduced abelian group G with End G = R and IGI = A. 

In each of the cases (i), (ii), and (iii) the group G is an R-module and there 

are free R-modules Fi, i = 0, 1, such that 0 ~ F0 ---* F1 --~ G ~ 0 is a short exact 

sequence of R-modules. Moreover, if  R is p-reduced for some prime p, then G is p- 

reduced, and ifZ(p) is the ring of integers localized at p, then Hom(G, GQZ(p)) = 

R| and G contains a free R-module L of rank A such that G / L is a p-group. 

Proo~ (i) is a main result in [17] and (ii) follows from [25]. In [25] the "co- 

maximal" argument must be replaced by a transcendental argument, as in [32]. 

The existence of a free resolution follows in case (i) from the construction of 

G: The cotorsion-free group G is obtained as a union of a smooth chain of R- 

submodules G~, a < A* , an ordinal, such that G~+I = <  G~, Yn: n E ~ > with 

PYn+I - Y,~ = a,~ E G~. By transfinite induction, there is a short exact sequence 

of free R-modules 0 ~ K --* F ~ G ~  ~ O. Let {y*: n E w} be free generators, 

set F~+I = F~ ~ y*R and extend the map ~r~: F~ ~ G~ ~ 0 by sending y* 
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onto y~. Then K~+I = Ks  | ~ c w ( P Y * + l  - Y* - 7r R where 7r~-l(a~) is 

a fixed preimage of a,~. One easily verifies that 

0 ~ K~+I --+ Fa+l ~ Ga+l --~ 0 

is short exact, and K~ [- Ks+i ,  F~ U Fa+l implies that K = [Ja<A. Ks  and 

F = [.J~<~. F~ are free R-modules. 

Similarly, case (ii) requires a short inspection of the generators used in [31]. The 

additional properties about Hom(G, G | Z(p)) and the existence of L are easily 

established. The first one requires a slight modification of the constructions and 

the latter is obvious from the construction. For instance in case (ii) the module 

L is just the free module F0, where End(F0, F1 , . . . ,  F4) = R in Rep4(R), and in 

case (i) L is the free R-submodule generated by "B" and all the "y~", (~ < A* in 

[17]. 

Inspection of the proof in [13] or [30] shows that (iii) holds. 

LEMMA 4.2: Let R be a ring with 1 E R such that R + is a B2-group and 

F = (Fo, FI,F2) E Rep2(R ) such that Fo/(F1 + F2) ap-group and Ai c_ Q with 

s ~ Ai f o r i=  1,2. ThenFR= Fo+ AxF1 + A2F2 isaB2-group. p 

Proof'. By the definition of B2-groups, we must find an ascending smooth chain 

9 v* of pure and decent subgroups of FR with countable quotients of successive 

members and union equal to FR. First we apply Lemma 3.1 for II = {p} and 

find an axiom-3 family ~- of R2-submodules X = (Xo, X1, X2) E ~ of F such 

that Xi = Fi A Xo and Fi/Xi is free for i = 0, 1, 2. 

We may assume that F = Ua<~* x (" ) ,  x(~) = (X(o~),x~),x~ '~)) with X(") r 

5 c and X(~+I) /X (~) free of countable rank for all a < A*. We will refine the chain 

{X("): a < A*} to construct the desired chain for FR. Since R + is a B2-group, 

we can write R = [J~<, R~ where the Ra's are pure and decent subgroups of R 

with Rc,+I/R~ of finite rank. 
A v ( ~ )  ~r, A*. First, let X(R ~) = X(o ") + A1X~ ") + ~2-~2 E for a < By Lemma 3.2, 

X (~) is pure and decent in FR and X~ ") @(~n<~ c(~")R -- X~ "+1) since X(a) E jv 

implies X~ ~) r- X~ "+1) for i = 0, 1, 2. 

Now let 

2 

Xa~ = XR @ (((~c(~'~ + ( ( ~  ( ~  Aic~"'~)R~)). 
n ~ w  i ~ l  n ( w  
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By Lemma 3.2 the R-module Xn,~ is pure and decent in XR,+I and hence in Fn. 
y(aq-1) Therefore ~'n = U~<,Xn~  and Xn ,+ i /Xn ~  has finite rank. Thus the chain 

y(c~+l) 
{Xnz:  3 < P} is a chain to be put between X(R ~) and ~'n to witness that  FR 

is a B2-group. 

MAIN THEOREM 4.3: Let R be a ring, 1 E R, such that R + is a B2-group. 

Suppose that there are three distinct primes p = po,pl,p2 such that R + is p~- 

reduced for i = 0, 1, 2. IrA is an infinite cardinal and A = IRI > 2 ~~ or cfA = w 

and A > 2 ~~ we also assume 

(,)  The p-adic closure of R has transcendence degree at least four over R. Then 

there exists a B2-group H with End H = R and [HI = A. Let T~ be the 

type ofQ(p,) = {z/p'~: z E Z,n  < w} for i = 1,2 and To = T1 A ~'2 = O. I f  

R + is free, then H is a B2-group with typeset {To, T1, T2}. 

Remark: Observe that a suitable choice of A, e.g. A - A a~ > [R[, makes ( .)  

empty. However the case A = [R[ will be of particular interest in our applications 

(e) in the introduction. The cardinal conditions allow us to apply three different 

types of realization theorems as summarized in (4.1). 

Proof: Recall that  Proposition 4.1 is applicable for any choice of A and we have 

a free resolution 0 --~ F1 --~ F0 --~ G --* 0 with free R-modules Fi of rank A and 

F1 a submodule of F0. Let F3 C_ F0 be a free R-module with F1 N F3 - 0 and 

(F3 �9 F1)/F1 -~ L C_ G as in Proposition 4.1. 

Let F3 = ~]~i<~ ~ < ~  einR and define F2 = ~ i < ~  ~ne~(e~ - p~ein)R where 

F1 = ~ i<~  e~R. Recall that  we may assume that F3 and F1 have the same 

infinite rank. Clearly 

(1) F1 n (F2).p = 0, 

where (...),p denotes the p-purification of (...), as follows by our choice of / '2  and 

F IN F3 = 0. It is also clear that 

(2) F1 is pure in Fo, 

because G is torsion-free. Moreover Fo/(F1 �9 F~) is an epimorphic image of G / L  

and hence a p-group by Proposition 4.1. We have 

(3) Fo/(F1 • F2) is a p-group, 



152 M. DUGAS AND R. GC)BEL Isr. J. Math. 

and claim 

(4) Hom(Fo/F2, G q) Z(p)) = 0. 

Let ~a: Fo ---* G | Z(p) be such a homomorphism with F2~ = 0. Then ei~a = 

pn(ein)~a for all i < g ,n  < w. Thus e ~  E p~(G | Z(p)). But Fo/(F1 | F2) is a 

p-group and G | Z(p) is torsion-free. Hence ~ = 0. Now let F = (Fo, F1, F2) E 

ReP2(R ). Next we show 

(5) End F = R. 

This also follows from [24], but we include the short proof for the convenience 

of the reader. If  ~ E EndF ,  then ~ induces ~ :  Fo/F1 -~ Fo/F1 -~ G and by 

the choice of G we have p~ = r E R. Thus ~o - r: F0 ~ F0 maps Fo into F1. 

In particular, F2(~ - r) C F2 A F1 = 0 by (i) and ~ - r induces a map from 

Fo/F1 + F2, a p-group, into Fo, a torsion-free group. This shows that  ~ - r = 0. 

We are finally ready to define our B2-group. Let Pl, P2 be the other two primes 

given in the hypothesis, let Ai = Q(P'), and define H = Fo + (A1F1 | A2F2), a 

B2-group by Lemma 4.1. Let 7/ denote the type Ai and TO = Vl A T2 = 0. We 

will show that  

(6) H(rl) = A1F1 and H(r2) = (A2F2),p; 

(7) End H = R; and 

(8) if R is homogeneous of type 0, then the typeset of H is {To, rl ,  r2}. 

To show (6) first observe that  trivially AiFi C_ H(rl). Let h E H(ri). Then 

pkh E A1F | A2F2 for some k E 1~! and since A1F1 (~ A2F2 is p ' -pure in H (since 

Fo/F1 OF2 is a p-group)we have [pkhIH = Ipkh[~ A1FI(~A=F=) for all primes q r p. 

This shows that  pkh E AiFi and h E (A2F2),p. Recall that  F1 is pure in F0, 

P 7 ~ Pi for i = 1, 2 and l ip  • Ai for i = 1, 2. This implies that  A1F1 is p-pure in 

H,  and hence h E A1F1 follows and (6) holds. 

To show that  (7) holds, consider ~ E End(H) .  Since H(r i ) ,  i = 1, 2, is fully 

invariant, we infer H(vl)cp = (A1F1)~o C AiFi for i = 1, 2. Note that  H/A1F1 = 

(Fo + A1F1 + A2F2)/A1F1 ~ (To + A2F2)/[AIF1 cl (Fo + A2F2)]. In the first step 

of the proof of Lemma 3.2, we showed that  Fo cl (A1F1 + A2F2) = F1 + F2 and we 

infer H/AIF1 -~ (Fo+ A2F2)/F1 = Fo/Fl+(A2F20F1)/F1 C G+ A2L C G| 

since p 7~ P2. 
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Consider ~' = ~ IFo/F1. Note that  Fo/F1 is isomorphic to a subgroup of 

H/AIF1 and ~ '  E Hom(G, G | Z(p)) = R | Z(v ) by choice of G. Thus ~ '  = 

r /m,  m E N is relatively prime to p. 

Let 4' = ~ m  - r. Then r E End(H)  and H e  _c A1F1. In particular A2F2r _C 

(A2F2).p n A1F1 = 0 by (6). Thus r induces a map r Fo ~ AIF1 with 

~p IF2 = 0. Since A1F1 is a free module over AIR we may view A1F1 as a 

subgroup of G | Z(p), and ~b' induces a map Fo/F2 ~ G | ~.(p). Now (4) implies 

4" = 0. We infer ~/, --= 0 and ~ = r /m  since H/Fo is torsion. Let e be an m-pure 

element in the R-module A1F1 | A2F2. Note that  e is m-pure if units are the 

only factors of m which divide e. Then eqo = e ~ E eR and m = 1 follows. This 
m 

shows that  (7) holds. 

Now let us assume that  R + is homogeneous of type 70 = 0, i.e. R + is free, 

and pick h C H. Then there is X = (Xo, X1, X2) C_ F = (Fo, F1, F2) such that  

mh E Xo for some m C N and Xi E Fi for i = 0,1,2.  By Lemma 3.2 the 

R-module B -= Xo + AIX1 + A2X2 is pure in H and we may compute the type 

of h inside B. Since R + is free, there are free pure subgroups Y~ C_ Xi such that  

h �9 Yo + (A1Y1 | A2Y2) -- B*, B* is pure in B, and B* is an almost completely 

decomposable group of finite rank. This shows that  h is of type Ti for some 

i �9 {0,1, 2}. 
We want to conclude this paper by giving a "topological version" of Theorem 

4.3. For ease of notation, we introduce the following 

Definition 4.4: Let R be a ring with I �9 R: We say that  R admits a B2-topology 

if there is a topology r on R such that  

(1) v is Hausdorff and R is complete in 7". 

(2) 7 is a linear topology induced by a family T of right ideals of R such that  

(R/ I )  + is a B2-group for each I �9 T.  

(3) There exist three distinct primes Pi such that  (R/ I )  + is pi-reduced for all 

I � 9  

With the help of this definition, we are now able to state our final 

THEOREM 4.5: Let R be a ring with a B2-topology, and T2 = {~0, ~1, r2} be 

as above. Then there exists a B2-group H such that End H, endowed with the 

finite topology, is topologically and algebraically isomorphic to R. If  R / I  is 

homogeneous of type r0 for each I �9 T, then T2 is the typeset of H. 

Proof." We call an R-module of the form R / I ( I  �9 T)  T-cyclic. A direct sum of 
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T-cycl ic  modules  is called E -T-cyc l i c :  We now have to run through the whole 

pape r  - -  which we will leave to the reader - -  subst i tut ing "free R-modules"  by 

E - T - c y c l i c  modules.  

Moreover,  we have to employ - -  for case (i) in Proposi t ion 4.1 - -  the cotorsion- 

free topological  version in [17]: There  exists a cotorsion-free abelian group G such 

tha t  End G, with its finite topology, is isomorphic to R as topological  rings. Here 

G is a union of a smooth  chain G = U~<~,  G~ such tha t  G~+I  /G ~ (~) 
(") _ y ( ~ )  

n < w) such tha t  PYn+I = an 6 G~ and for all n < w, AnnR(y(n ~)) = 

I~ C T.  Then  (like in the proof  of Proposi t ion 4.1) there exists a ~-~-T-cyclic 

submodule  L in G, and hence there are ~-~-T-cyclic modules  Fo, F1 such t ha t  

0 ~ Fo ~ F1 ~ G ~ 0 is short  exact.  
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